Etude Structurale de Cs₂SnF₆

MM. J. DURAND,* J. L. GALIGNE,† ET A. LARI-LAVASSANI*

*Laboratorie de Chimie Minérale C, Chimie des Matériaux, E.R.A. 314, Université des Sciences et Techniques du Languedoc, Place Eugène Bataillon, 34060 Montpellier, Cédex, France, et †Laboratoire de Minéralogie et Cristallographie, Université des Sciences et Techniques du Languedoc, Place Eugène Bataillon, 34060 Montpellier, Cédex, France

Received March 12, 1975; revised April 17, 1975

The Cs₂SnF₆ structure is of the K₂GeF₆ type (trigonal $P\bar{3}m1$). The unit cell dimensions are a = 6.322 (6) Å, c = 5.032 (5) Å; Z = 1. Each tin atom is linked to six fluorine atoms at the corners of a nearly regular octahedron with Sn-F = 1.952 (7) Å. The SnF₆⁻ anions are isolated. Each cesium atom is surrounded by 12 fluorine atoms. The final *R* index is R = 0.045 from 453 X-ray reflections.

De nombreux hexafluorures de type $M_1^1 M^{IV} F_6$ sont connus à ce jour et leurs caractéristiques structurales précisées. On constate cependant que ceux pour lesquels $M^{IV} = \text{Sn}^{4+}$ sont encore mal connus. Dans une précédente note (1) nous avons précisé leur existence et leurs caractéristiques cristallographiques lorsque $M^I = K$, Rb, Cs, Tl, NH₄.

Il s'agit de deux séries, l'une cubique (Fm3m) de structure antifluorine, l'autre hexagonale $(P\overline{3}m1)$ de type anti-CdI₂. Les résultats obtenus ont été comparés à ceux de la bibliographie. C'est ainsi que cette dernière révèle que les phases $M_2^1 M^{IV} F_6$ où $M^I = K$, Rb, Tl, Cs, NH₄, et $M^{IV} = Si$, Ge, Ti, Zr, V, Cr, Mn, Re, Ru, Os, Rh, Ir, Ni, Pd, Pt, adoptent au moins une des 3 structures suivantes:

-structure rhomboedrique à réseau hexagonal, $P\overline{3}m1$, de type K₂GeF₆. Dans ce type la répartition des groupements anioniques GeF₆²⁻ et des cations K⁺ est d'arrangement anti-CdI₂.

—structure hexagonale, $P6_3mc$, de type K_2MnF_6 , où par rapport à la structure précédente le paramètre c est double, le paramètre a restant identique.

-structure cubique, Fm3m, de type K_2SiF_6 avec une répartition des groupements

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain anioniques SiF_{2}^{2-} et des cations K⁺ identique à celle de la structure antifluorine.

La bibliographie montre que lorsque plusieurs variétés existent celle de structure rhombocdrique de type K_2GeF_6 est toujours plus compacte que celle de structure cubique. Il n'en est pas de même pour les composés M_2SnF_6 exepté pour Cs₂SnF₆ (1).

La seule étude structurale par diffraction X consacrée aux hexafluorostannates a été réalisée par Hope et coll. (2) sur Na₂SnF₆. Il semble cependant que les résultats manquent de précision: le coefficient R est différent suivant les familles de plans observés (0.107 pour h0l et 0.168 pour hk0). Pour préciser la géométrie de l'octaèdre et en particulier les distances Sn-F nous avons réalisé l'étude structurale précise de Cs₂SnF₆.

Alors que ce travail était en cours, Marseglia et Brown (3) ont présenté la structure de Li_2SnF_6 , $2H_2O$. Ces auteurs précisent les dimensions et la géométrie de l'octaèdre SnF_6^{2-} , il est en particulier beaucoup plus symétrique que l'octaèdre TiF_6^{2-} .

Partie Experimentale

La préparation de Cs_2SnF_6 est réalisée en solution aqueuse (1) par cristallisation à la

TABLEAU I

	x/a		<i>y</i> /β			z/e
Cs	0.3333		0.6666		0.3090(2)	
Sn	0		0		0	
F	0.1480(11)		0.1480(11)		0.2163(12)	
	β11	β22	β ₃₃	β ₁₂	β ₁₃	β23
Cs	119(2)	119(2)	125(2)	59(1)	0	0
Sn	81(3)	81(3)	63(3)	40(2)	0	0
F	168(26)	168(26)	169(19)	99(15)	33(16)	-33(16)

Positions Atomiques et Coefficient d'Agitation Thermique $(10^4\beta_{ij})^a$

^a Expression du facteur de température, $T = \exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)]$. Les écarts types sont indiqués entre parenthèses.

température ambiante. Une étude par les techniques du monocristal nous a permis de préciser le système cristallographique, le groupe d'espace et les paramètres de maille. Ces derniers ont été affinés à partir du diagramme de poudre (4). Les résultats sont les suivants:

$$\begin{aligned} a &= 6.322 \text{ (6) } \text{\AA} & \rho_x &= 4.75 \pm 0.02 \text{ g/cm}^3 \\ c &= 5.032 \text{ (5) } \text{\AA} & \rho_{ob} &= 4.73 \pm 0.04 \text{ g/cm}^3 \\ V &= 174.2 \text{ (5) } \text{\AA}^3 & Z &= 1. \end{aligned}$$

Il s'agit d'un réseau rhomboédrique à maille hexagonale. Aucune condition d'extinction n'est observée; les groupes d'espace possibles sont: $P\bar{3}1m$, $P\bar{3}m1$, P31m, P3m1, P321, P312, $P\bar{3}$ ou P3. Seul le premier a été retenu car Cs₂SnF₆ est isotype avec K₂GeF₆.

Un monocristal a été sélectionné puis transformé en sphère (R = 0.102 mm). Les mesures d'intensité ont été effectuées à la température ambiante sur diffractomètre automatique Enraf Nonius type CAD 3. Un balayage $\theta/2\theta$ a été utilisé avec le rayonnement MoKa monochromatisé. 453 réflexions indépendantes ont été mesurées jusqu'à un angle $\theta = 40^{\circ}$. Les intensités ont été corrigées des effets de Lorentz-polarisation et d'absorption ($\mu R = 0.79$) au moyen de programmes permettant de traiter des cristaux sphériques.

Determination et Affinement de la structure

La structure a été résolue par isotypie avec K_2GeF_6 , groupe d'espace $P\overline{3}m1$. Avec un motif par maille, les atomes sont dans les sites suivants:

1 Sn (a) 0,0,0
2 Cs (d)
$$\frac{1}{3}, \frac{2}{3}, z$$
 et $\frac{2}{3}, \frac{1}{3}, \overline{z}$

TABLEAU II

MOUVEMENTS D'AGITATION THERMIQUE ET ORIENTATION DES ELLIPSOIDES D'AGITATION THERMIQUE⁴

		Cosinus directeurs suivants			
	$(\bar{u}^2)^{1/2}$	ox	оу	oz	
Sn	0.135	0.898	1.078	0.000	
	0.135	0.865	-0.230	0.000	
	0.127	0.000	0.000	-1.000	
Cs	0.111	0.868	1.094	0.000	
	0.111	0.868	-0.226	0.000	
	0.091	0.000	0.000	-1.000	
F	0.189	0.842	0.128	0.618	
	0.152	0.665	1.083	-0.324	
	0.108	0.425	-0.380	-0.716	

^a L'espace est rapporté au trièdre origine ox, oy, oz, dont les axes sont dirigés suivant a, b, c, respectivement.

FIG. 1. Projection de la structure de Cs₂SnF₆ sur le plan (001).

$$\begin{array}{ll} 6 \ \mathrm{F} & (i) & x, \bar{x}, z' \ \mathrm{et} \ x, 2x, z' \colon 2\bar{x}, \bar{x}, z' \\ & \bar{x}, x, \bar{z}; \ \bar{x}, 2\bar{x}, \bar{z}'; \ 2x, x, \bar{z}', \end{array}$$

En attribuant aux atomes de césium, étain et fluor les coordonnées respectives des atomes de potassium, germanium et fluor dans la structure de K_2GeF_6 , un affinement avec agitation thermique isotrope conduit à un facteur

$$R = \sum \frac{|Fo - |Fc||}{|Fo|} = 0.09.$$

L'affinement a été poursuivi en affectant les atomes des coefficients d'agitation thermique anisotrope et en tenant compte des contraintes imposées par la symétrie des divers sites occupés (5). La valeur finale de R est de

FIG. 2. Environmement de Sn⁴⁺. z/c: Sn, 0; F₁, 0.216; F₂, -0.216. Distances: Sn-F₁ = Sn-F₂ = 1.952(7) Å. Angles: F₂SnF₂ = F₁SnF₁ = 91.9° (4), F₁SnF₂ = 88.1° (4).

FIG. 3. Projection de la structure de Cs_2SnF_6 sur le plan (110).

TABLEAU III

Environnement de l'Atome de Césium (pour Cs, z/c = 0.309)

Nature de l'atome environnant	Cote de l'atome environnant	Distances observées	Nombre de distances égales
 F	0.784	3.333(7)	3
F	-0.216	3.135(7)	3
F	0.216	3.202(7)	6

0.045 avec les positions atomiques indiquées dans le Tableau I.

Pour chaque atome, nous avons calculé les valeurs des écarts quadratiques moyens $(\bar{u}^2)^{1/2}$ suivant les trois axes principaux des ellipsoïdes d'agitation thermique. Les résultats figurent dans le Tableau II.

Description de la Structure et Discussion

La Fig. 1 montre la projection de la structure sur le plan (001) parallèlement à l'axe c. Chaque atome d'étain est relié à 6 atomes de fluor constituant les sommets d'un octaèdre légèrement déformé (Fig. 2). Ces octaèdres sont individualisés et présentent deux triangles équilatéraux parallèles au plan (001) (Fig. 1). L'environnement de Sn peut aussi être défini comme un antiprisme régulier (symétrie 3m).

La distance Sn-F = 1.952 (7) Å, est proche de celle trouvée par Marseglia et Brown (3) dans Li₂SnF₆, 2H₂O (1.962 et 1.983 Å) mais assez différente de celle trouvée par Hoppe et coll. pour Na₂SnF₆ (2) (1.83, 1.92, et 1.96 Å).

L'atome de césium est entouré par 12 atomes de fluor à des distances compatibles avec un tel environnement (Tableau II). Ces groupements se développent en mettant en commun des triangles parallèles au plan (001); ils assurent l'ossature de la structure car les octaèdres (SnF_6) sont individualisés (Fig. 3).

Un octaèdre SnF_6 est entouré par 6 polyèdres ayant comme centre le Cs: ils mettent en commun les faces non perpendiculaires à l'axe \ddot{c} . Ce type d'enchaînement rend compte de la déformation de SnF_6 . Alors que la distance théorique F-F dans un tel environnement régulier autour de $Sn^{I\nu}$ serait de 2.761 Å, celles observées ici sont de 2.808 et 2.714 Å (respectivement pour les faces non engagées puis communes avec le polyèdres CsF₁₂).

References

- A. LARI-LAVASSANI, G. JOURDAN, C. AVINENS, ET L. COT, C.R. Acad. Sci. 279c, 193 (1974).
- 2. CH. HEBECKER, H. G. VON SCHNEIRING, ET R. HOPPE, Naturwissenschaften 53, 154 (1966).
- E. A. MARSEGLIA ET I. D. BROWN, Acta Crystallogr. B29, 1352 (1973).
- 4. A. NORBERT ET M. MAURIN, *Rev. Chim. Min.* 6, 687 (1966).
- 5. W. J. PETERS ET J. H. PALM, Acta Crystallogr. 20, 147 (1966).